933 research outputs found

    Magnetic Domain Patterns Depending on the Sweeping Rate of Magnetic Fields

    Full text link
    The domain patterns in a thin ferromagnetic film are investigated in both experiments and numerical simulations. Magnetic domain patterns under a zero field are usually observed after an external magnetic field is removed. It is demonstrated that the characteristics of the domain patterns depend on the decreasing rate of the external field, although it can also depend on other factors. Our numerical simulations and experiments show the following properties of domain patterns: a sea-island structure appears when the field decreases rapidly from the saturating field to the zero field, while a labyrinth structure is observed for a slowly decreasing field. The mechanism of the dependence on the field sweeping rate is discussed in terms of the concepts of crystallization.Comment: 4 pages, 3 figure

    Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions

    Full text link
    In connection with the weak null condition, Alinhac introduced a sufficient condition for global existence of small amplitude solutions to systems of semilinear wave equations in three space dimensions. We introduce a slightly weaker sufficient condition for the small data global existence, and we investigate the asymptotic pointwise behavior of global solutions for systems satisfying this condition. As an application, the asymptotic behavior of global solutions under the Alinhac condition is also derived.Comment: 56 pages, the final versio

    Gut microbiota differs between children with inflammatory bowel disease and healthy siblings in taxonomic and functional composition: a metagenomic analysis

    Get PDF
    Current treatment for pediatric inflammatory bowel disease (IBD) patients is often ineffective, with serious side effects. Manipulating the gut microbiota via fecal microbiota transplantation (FMT) is an emerging treatment approach but remains controversial. We aimed to assess the composition of the fecal microbiome through a comparison of pediatric IBD patients to their healthy siblings, evaluating risks and prospects for FMT in this setting. A case-control (sibling) study was conducted analyzing fecal samples of six children with Crohn's disease (CD), six children with ulcerative colitis (UC) and 12 healthy siblings by metagenomic sequencing. In addition, lifetime antibiotic intake was retrospectively determined. Species richness and diversity were significantly reduced in UC patients compared with control [Mann-Whitney U-test false discovery rate (MWU FDR) = 0.011]. In UC, bacteria positively influencing gut homeostasis, e.g., Eubacterium rectale and Faecalibacterium prausnitzii, were significantly reduced in abundance (MWU FDR = 0.05). Known pathobionts like Escherichia coli were enriched in UC patients (MWU FDR = 0.084). Moreover, E. coli abundance correlated positively with that of several virulence genes (SCC > 0.65, FDR < 0.1). A shift toward antibiotic-resistant taxa in both IBD groups distinguished them from controls [MWU Benjamini-Hochberg-Yekutieli procedure (BY) FDR = 0.062 in UC, MWU BY FDR = 0.019 in CD). The collected results confirm a microbial dysbiosis in pediatric UC, and to a lesser extent in CD patients, replicating associations found previously using different methods. Taken together, these observations suggest microbiotal remodeling therapy from family donors, at least for children with UC, as a viable option.NEW & NOTEWORTHY In this sibling study, prior reports of microbial dysbiosis in IBD patients from 16S rRNA sequencing was verified using deep shotgun sequencing and augmented with insights into the abundance of bacterial virulence genes and bacterial antibiotic resistance determinants, seen against the background of data on the specific antibiotic intake of each of the study participants. The observed dysbiosis, which distinguishes patients from siblings, highlights such siblings as potential donors for microbiotal remodeling therapy in IBD

    Temporal and technical variability of human gut metagenomes

    Get PDF
    BACKGROUND: Metagenomics has become a prominent approach for exploring the role of the gut microbiota in human health. However, the temporal variability of the healthy gut microbiome has not yet been studied in depth using metagenomics and little is known about the effects of different sampling and preservation approaches. We performed metagenomic analysis on fecal samples from seven subjects collected over a period of up to two years to investigate temporal variability and assess preservation-induced variation, specifically, fresh frozen compared to RNALater. We also monitored short-term disturbances caused by antibiotic treatment and bowel cleansing in one subject. RESULTS: We find that the human gut microbiome is temporally stable and highly personalized at both taxonomic and functional levels. Over multiple time points, samples from the same subject clustered together, even in the context of a large dataset of 888 European and American fecal metagenomes. One exception was observed in an antibiotic intervention case where, more than one year after the treatment, samples did not resemble the pre-treatment state. Clustering was not affected by the preservation method. No species differed significantly in abundance, and only 0.36% of gene families were differentially abundant between preservation methods. CONCLUSIONS: Technical variability is small compared to the temporal variability of an unperturbed gut microbiome, which in turn is much smaller than the observed between-subject variability. Thus, short-term preservation of fecal samples in RNALater is an appropriate and cost-effective alternative to freezing of fecal samples for metagenomic studies

    proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes

    Get PDF
    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de

    Proximity to Fermi-surface topological change in superconducting LaO0.54F0.46BiS2

    Get PDF
    The electronic structure of nearly optimally-doped novel superconductor LaO1−x_{1-x}Fx_xBiS2_2 (x{\it x} = 0.46) was investigated using angle-resolved photoemission spectroscopy (ARPES). We clearly observed band dispersions from 2 to 6 eV binding energy and near the Fermi level (EF{\it E}_{\rm F}), which are well reproduced by first principles calculations when the spin-orbit coupling is taken into account. The ARPES intensity map near EF{\it E}_{\rm F} shows a square-like distribution around the Γ\Gamma(Z) point in addition to electronlike Fermi surface (FS) sheets around the X(R) point, indicating that FS of LaO0.54_{0.54}F0.46_{0.46}BiS2_2 is in close proximity to the theoretically-predicted topological change.Comment: 6 pages, 3 figures, + supplemental materia

    Species-level functional profiling of metagenomes and metatranscriptomes.

    Get PDF
    Functional profiles of microbial communities are typically generated using comprehensive metagenomic or metatranscriptomic sequence read searches, which are time-consuming, prone to spurious mapping, and often limited to community-level quantification. We developed HUMAnN2, a tiered search strategy that enables fast, accurate, and species-resolved functional profiling of host-associated and environmental communities. HUMAnN2 identifies a community's known species, aligns reads to their pangenomes, performs translated search on unclassified reads, and finally quantifies gene families and pathways. Relative to pure translated search, HUMAnN2 is faster and produces more accurate gene family profiles. We applied HUMAnN2 to study clinal variation in marine metabolism, ecological contribution patterns among human microbiome pathways, variation in species' genomic versus transcriptional contributions, and strain profiling. Further, we introduce 'contributional diversity' to explain patterns of ecological assembly across different microbial community types

    MOCAT2: a metagenomic assembly, annotation and profiling framework

    Get PDF
    MOCAT2 is a software pipeline for metagenomic sequence assembly and gene prediction with novel features for taxonomic and functional abundance profiling. The automated generation and efficient annotation of non-redundant reference catalogs by propagating pre-computed assignments from 18 databases covering various functional categories allows for fast and comprehensive functional characterization of metagenomes. Availability and Implementation: MOCAT2 is implemented in Perl 5 and Python 2.7, designed for 64-bit UNIX systems and offers support for high-performance computer usage via LSF, PBS or SGE queuing systems; source code is freely available under the GPL3 license at http://mocat.embl.de. Contact: [email protected]
    • …
    corecore